Why choose ELISA assays from Biomedica?
We are scientists, developers and manufacturers and understand the importance of offering assays that generate specific, reliable and reproducible results.
Early on, starting from product development to final assay validation and product release until final ELISA kit manufacturing, every assay goes through a stringent quality control process.
Why choose ELISA assays from Biomedica?
Because we care!
Get the most accurate results from your precious samples with Biomedica ELISA kits.
SPECIFICIC – RELIABLE – REPRODUCIBLE ELISA Assays
1. SPECIFICITY – epitope-mapped and characterized antibodies for accurate biomarker detection.
The performance of an ELISA is linked to the quality of the antibody pairs used for biomarker detection.
We therefore:
- select antibody pairs with high affinity and specificity with mapped binding sites
- optimize our assays to quantify biomarkers in both healthy and pathological samples
Example: FGF23 sample values of normal and pathological samples
2. RELIABILITY – extensive validation using clinical samples (parallelism, S/R, precision, analyte stability..) in various sample matrices
We validate our ELISA assays according to international quality guidelines (FDA, EMEA) .
Our Biomedica Immunassays go through an extensive validation process
2.1. Accuracy – accurate detection of biomarkers in clinical samples and exclusion of matrix effects that may interfere with the measurement of the analyte of interest.
- Accuracy is determined in all validated sample types that are spiked with known amounts of the recombinant analyte. Samples are analysed against the standard/calibration curve of the assay and then compared with the nominal value.
2.2. Parallelism / Dilution Linearity – lot to lot consistency ensured by our stringent quality management guidelines
- During assay validation we analyze the recovery of the analyte in diluted samples that contains the endogenous / recombinant analyte of interest.
Example: dilution linearity (parallelism) of samples containing endogenous and recombinant Neuropilin-1 (NRP1).
2.3. Specificity and Cross-Reactivity – only detects the analyte of interest
- We carefully select antibodies that exclusively detect the specific analyte. Our specificity experiments are designed to characterize the antibody-antigen interactions and to determine possible isoforms that could be bound by the antibody.
Example: antibody recognizing all three isoforms of the target analyte on a Western blot.
2.4. Sensitivity
- Our ELISA assays are optimized to minimize the background signal while maximizing the signals from the measurements of the analyte ensuring maximal sensitivity.
The data for the Lower Limit of Quantification (LLOQ) and the Limit of Detection (LOD) are indicted in the instructions for use and on our website for all our ELISA kits.
2.5. Precision – precise and reproducible results within and across lots
- Within-run and in-between run precision is tested several times within one ELISA assay lot to guarantee that results are accurate when using kits that derive from different lots.
2.6. Calibration
- The accurate quantification of a biomarker depends on the linearity and the reproducibility of the standard curve. During the assays optimization process we ensure low variability between the results of the calibrators. Where available, we employ WHO reference reagents to ensure a harmonized standardization.
Example: standard curve for the FGF23 ELISA after 4PL transformation. The error bars reflect the variability of the measurement.
2.7. Stability
- During development we test the stability of all assay components as well as the stability of the analyte of interest in the respective sample matrices (serum, plasma). For instance we expose real clinical samples with elevated levels of the analyte to multiple freeze-thaw cyles and also determine stability at room temperature.
Example: stability of the analyte Periostin in clinical samples after multiple freeze-thaw (F/T) cycles in different sample matrices.
Freeze-thaw stability of Periostin
Validation reports
The validation reports of the respective ELISA assays can be downloaded on the individual Biomedica ELISA product pages.
3. REPRODUCIBILITY
ELISA ASSAY QUALITY MANAGEMENT
Our Quality Control Process
All our kits undergo a stringent quality control process, including testing of lot-to-lot consistency as well as the kit stability during shelf-life.
Our manufacturing process follows the ISO 9001: 2015 management system and conforms to GMP /GLP guidelines.
Ensuring lot-to-lot consistency with a panel of quality control samples
Our internal quality control panel is one integral part of our manufacturing protocols. It contains samples from different matrices (serum, EDTA-plasma, citrate-plasma..) containing the endogenous/natural analyte as well as samples spiked with the recombinant protein. Every new lot as well as all retains, that are assayed every three months, are tested with the specific QC sample panel.
Example: IC trending showing the quotient of the proANP concentration measured in Internal Controls (IC) in 3 different proANP ELISA lots compared with previously established median concentrations.
Qualified CUSTOMER SERVICE – we accompany you in every step.
Our qualified customer service representatives have hands-on research experience to assist you along the way, from decision making to technical questions.
WE VALUE YOUR OPINION
Our ELISA assays are developed to serve your needs. We therefore select our biomarker targets based on your input.
Pre-testing: before a new ELISA assay is launched, selected customers test the product to ensure that the assay is reliable and reproducible outside of our lab-facilities.
Biomedica – ELISA development scheme
Learn more about how we guarantee the performance of our products – click here .
Further reading
ICH Q2(R2) Validation of analytical procedures – Scientific guideline